-
搞定DC/DC電源轉換方案設計,靠這11條金律!
搞嵌入式的工程師們往往把單片機、ARM、DSP、FPGA搞的得心應手,而一旦進行系統設計,到了給電源系統供電,雖然也能讓其精心設計的程序運行起來,但對于新手來說,有時可能效率低下,往往還有供電電流不足或過大引起這樣那樣的問題,本文十大金律輕松搞定DC/DC電源轉換電路設計。
2016-10-31
DC/DC 電源轉換 電源設計
-
如何放置去耦電容,才可最佳的PCB布線
相信對做硬件的工程師,畢業開始進公司時,在設計PCB時,老工程師都會對他說,PCB走線不要走直角,走線一定要短,電容一定要就近擺放等等。
2016-10-29
去耦電容 PCB布線
-
變頻器逆變模塊故障或損壞該如何去修復呢?
變頻器逆變模塊損壞多半是由于驅動電路損壞致使1個橋臂上的2個開關器件同一時間導通所造成的。變頻器逆變功率模塊損壞是不管在矢量變頻器還是節能變頻器等其他變頻設備上常見到的故障,解決這種問題只有查到損壞的根本原因,并首先消除再次損壞的可能,才能更換逆變模塊,否則換上去的新模塊會再損壞。
2016-10-29
變頻器 逆變模塊
-
無源器件和有源器件你真的區分清楚了嗎?
簡單地講就是需能(電)源的器件叫有源器件,無需能(電)源的器件就是無源器件。有源器件一般用來信號放大、變換等,無源器件用來進行信號傳輸,或者通過方向性進行“信號放大”。容、阻、感都是無源器件,IC、模塊等都是有源器件。(通俗的說就是需要電源才能顯示其特性的就是有源元件,如三極管。...
2016-10-28
有源器件 無源器件
-
如何利用EMIStream來解決板級EMI問題?
隨著電子系統的復雜度越來越高,EMI問題也越來越多。為了使自己的產品能達到相關國際標準,設計人員不得不往返于辦公室和EMC實驗室,反復地測試、修改設計、再測試,如何在產品設計的階段就及時發現EMI問題變得重要。PCB布局、布線以及電源層的處理對整個電路板的EMI問題有著非常重要的影響。本文將...
2016-10-28
EMIStream PCB EMI
-
你不得不知道的LED去電源化設計!
照明燈具設計基于LED發光部分、驅動控制部分和光學散熱結構設計的三方博弈。按燈具綜合考慮電路結構,去電源化設計適合大批量的照明產品,綜合考慮才能顯現優勢。
2016-10-28
LED 去電源化
-
STM32中GPIO是如何工作的?想知道嗎?
推挽電路是兩個參數相同的三極管或MOSFET,以推挽方式存在于電路中,各負責正負半周的波形放大任務,電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關速度。
2016-10-28
STM32 GPIO
-
案例分享:高精度ADC電路板的布局與布線方案
最優PCB布局布線對于使ADC達到預期的性能十分重要。當設計包含混合信號器件的電路時,你應該始終從良好的接地安排入手,并且使用最佳組件放置位置和信號路由走線將設計分為模擬、數字和電源部分。
2016-10-28
ADC 電路板 布線
-
電源可靠性預測是藝術和科學結合的產物
系統設計人員仍然面臨一個問題:在這些測試條件以外的條件下操作時,他們如何自信地預測電源單元(PSU)的平均壽命?各種各樣常見因素可能打破這些條件,如:熱、沖擊和振動、電源電壓的瞬態波動、電解電容的老化等都可能引起過早失效。因此,數據手冊的標準壽命額定值很少完全適用于真實世界的產品...
2016-10-27
PSU 元器件 電源
- 安森美與舍弗勒強強聯手,EliteSiC技術驅動新一代PHEV平臺
- 安森美與英偉達強強聯手,800V直流方案賦能AI數據中心能效升級
- 貿澤電子自動化資源中心上線:工程師必備技術寶庫
- 隔離變壓器全球競爭圖譜:從安全隔離到能源革命的智能屏障
- 芯海科技盧國建:用“芯片+AI+數據”重新定義健康管理
- 華邦電子:用安全閃存筑牢萬物互聯的“底層安全防線”
- 手機里的“無線橋梁”:揭秘射頻芯片如何讓信號“飛”起來
- 汽車電氣故障的“隱形殺手”:電壓下降如何用福祿克萬用表精準排查?
- 毫米級精準的秘密:AGV無人叉車如何成為工業搬運的“定位大師”
- 光與距離的協同:揭秘智能設備里的“感知雙雄”——照度傳感器與接近傳感器
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall